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CHEMICALLY INDUCED DAMAGE TO THE HIPPOCAMPAL FORMATION

P

SUMMARY

r

In the present work it was shown that degeneration of the
hippocampal formation after trimethyltin (TMT) administra-
tion can be detected at an early phase by recordings from
electrodes 1implanted in the hippocampal formation. The

.::’l?‘v

distribution of the damage can be studied by histology, and ﬁ%
was shown to include the pyramidal cells in the CA3 and CA4 -:#
subfields in the initial period and spreading to the CAl :\j
after a complete destruction of the pyramidal cells in CA3 r:,

“y =

and CA4. MNeurochemical methods showed that the degeneration
was spesific for glutamergic neurons in the hippocampus, and
not affecting gabaergic or cholinergic neurons. High affi-
nity uptake of 3H] glutamate was the only biochemical para-
meter investigated which was changed. In vitro low concen-
trations of TMT increased the efflux of_I H| glutamate from
synaptosomes in the resting state, but had no effect on the
efflux of [3H] GABA. The synaptosomal reuptake of trans-
mitter and receptor binding were both inhibited in the pre-
sence of TMT. In relation to reports on TMT as an anion con-
ductor, the effect of changes in extracellular Cl1™ concen-
tration on transmitter release was investigated. A reduction
in the external Cl1™ concentration was shown to have a wmuch
larger effect on the efflux of tramsmitter from glutamergic
than from GABAergic synaptosomes. The sensitivity of the
hippocampal electric activity to changes after exposure to
toxic compounds was applied for the investigation of a puta-
tive neurotoxic effect of long term exposure to low levels
of toluene. An increased synchronization together with an
increased frequency in the theta waves was observed during
the first period of toluene exposure. The later phase was
charachterized by a gradually increasing disruption in regu-
lar waves and a reduction in the theta frequency. Small
improvements regarding regularity, but no increase in fre-
quency was seen during one month after termination of expo-
sure, indicating that irreversible changes in neuronal func-
tions have occured.
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1 INTRODUCTION

yf 1.1 Hippocampal function

K-

3

S The hippocampal formation is one of the most extensively studied areas

of the brain. The first theory of the hippocampus as an important

o factory centre, based on its auatomical location in the rhinence-
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phalon or “smell brain” (Ramon y Cajal, 1903; Brodal, 1947), was
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t::: displaced by a hypothesis suggesting that the hippocampus 1is a part of
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a circuit forming the neural substrate of emotional behavior proposed
by Papez in 1937. This hypothesis was extended by MacLean (1952) who
introduced the term limbic system, which included the cerebral cortex
surrounding the medial part of the cerebral hemisphere and the subcor-
ti:al nuclei to which it is connected, and suggested that these areas
are related to non~visceral functions. Since the introduction of the
term limbic system, many brain regions have been shown to have connec-

tions with the limbic cortex, and it is now clear that essentially all

of the major functional systems in the brain share direct connections

with the 1limbic lobe (Brodal, 1981). This has made it particularly
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difficult to define the limits of the limbic system, and the old

o

assumption upon which the limbic system concept was based, namely that
visceral and non-visceral systems in the brain can be clearly

distinguished, seems to be disproved.

Present knowledge suggests that the hippocampal formation may be

responsible for intergration of information from the sensory modali-
ties, and transformation of these informations to complex association
areas and visceral and motoric control systems. In the brqadest func-
tional terms it seems to be in the unique position of influencing
somatomotor, visceral, motivational and affective and cognitive mecha-

nisms (Swanson, 1983).

1.2 Hippocampal anatomy

The hippocampal formation has a unique structural organization. The

major fiber connections are located in sharply demarcated regions, and ‘o

cells and fibers form distinct laminae (Andersen et al, 1971). The

-~
relative simplicity of its intrinsic neuronal architecture renders the g
hippocampus a popular model system for the study of basic cell biolo- 5
gical functions. 3

5
The hippocampal region concists of the area dentata, the hippocampus S
and the subiculum, see Figure 1.1, (Blackstad, 1956). The principal R
cells of the area dentata are the granule cells with {ts excitatory 2

-
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CA1

Schematic drawing showing the main layers and their con-
nections in the hippocampal formation

Labelling: Hippocampus: F=fimbria, O=stratum oriens,
P=stratum pyranidale (with the 1indicated subfields
CAl-4), R=stratum radiatum, M=stratum lacunosum molecu-
lare, LU=stratum lucidum (mossy fibre layer). Area den-
tata: H=hilus fascia dentata, G=stratum granulosum,
M=stratum moleculare. PP=perforant path axons from the
enthorhinal cortex distributing to the molecular layer of
area dentata. Granular cells give rise to the mossy
fibres, which termipnates in the hilus of fascia dentata
and in stratum lucidum of CA3 and CA4

the mossy fibers, (Blackstad et al, 1970). The pyramidal cells
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major neurons of the hippocampus. They are arranged in a
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continous layer, the stratum pyramidale, and their dendrites
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are located in the stratum oriens, stratum radiatum and the stratum
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moleculare (Andersen et al, 1971). The hippocanpus is
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divided into the subfields CAl-4 (Lorente de No, 1934), in the rat the
CA2 is usually included in the CA3 (Blackstad, 1956).

The main inputs to the hippocampus are the perforant path (Lorento de
No, 1934; Hjort-Simonsen, 1972), which originates in the entorhinal
cortex and terminates in the area dentata, and the septo-hippocampal
projection, which originates in the medial septal nucleus and distri-
butes to the whole hippocampal formation and the adjacent cortical
areas (Swanson and Cowan, 1979). Impulses entering the granule cells
through the perforant path are further processed through the hippocam-
pal formation by a three-membered neuronal chain, i e the mnossy
fibers, the CA3 axons and the CAl axons. The CA3 neurons receive
impulses from the mossy fibers (Blackstad et al, 1970) and propagate
these impulses through the Schaffer collaterals to the ipsilateral CAl
region (Schaffer, 1892) and through the commisural fibers to the
contralateral CAl and CA3 region (Blackstad, 1956; Laurberg, 1979).
The excitatory CAl pyramidal cells send most of their axons caudally
into the subicular complex (Andersen et al, 1973). All these excita-
tory pathways appear to be monosynaptically conected (Andersen, 1975),
but they are also influenced by recurrent inhibition at each step
(Andersen et al, 1964). Local interneurons are present both in the
area dentata and in the stratum pyramidale of the hippocampus

(Storm-Mathisen, 1972; Fonnum and Walaas, 1978).

The septo-hippocampal connections are mediated through the fimbria and
fornix. Both CAl and CA3 pyramidal cells projects to the lateral sep-
tum via fimbria (Swanson and Cowan, 1977). The lateral septum projects

to the medial septum, which in turn projects back to the hippocampal

o
" l‘l

subfields as well as to the dentate granular cells and the subicular

complex (Swanson, 1978; Swanson and Cowan, 1979).

o .
L P A )

.
v a

The summarized connections represents the quanitatively important part

T

s

of the hippocampal circuitry. More detailed descriptions are given in

.
<
LIV R S

reviews by Andersen, 1975, and Walaas, 1983.
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1.3 Neurotransmitters in the hippocampus

The unique anatomy of the hippocampal formation, decribed above has

s Mia B A A X_A 3 _A _Ammun .

made it an attractive brain area for neurotransmitter studies. The
acidic amino acids, glutamate and aspartate are probably the most
important neurotransmitters in the hippocampus. The entorhinal per-
forant path is a well documented glutamergic or aspartergic pathway
(Nadler et al, 1976; 1978; Cotman and Nadler, 198l; Storm~Mathisen,
1977; 1981), while the role of acidic amino acids in the hippocampal
mossy fibers is yet uncertain. Some evidence do however exist for this
fibers utilizing glutamate or aspastate as well (Storm-Mathisen and
Iversen, 1979; Aamodt et al, 1984). Both the CA3 and CAl excitatory
fibers may also utilize glutamate or aspartate as transmitter (Nadler
et al, 1976; Storm—Mathisen, 1977; 1978; Fonnum and Walaas, 1978; Fon-
num et al, 1979).

Acetylcholine is the excitatory transmitter of about 50% of the

afferents from medial septum entering the hippocampus through fimbria

e X A PR M AT A A MM P L A AN AR ..

(Lewis and Shute, 1967; Lewis et al, 1967; Storm-Mathisen, 1972;
Wainer et al, 1985). The transmitter of the non-cholinergic fimbrial
fibers are at present not identified. GABA neurons in the hippocampal

formation are mainly local neurons (Fonnum and Storm-Mathisen, 1969;

Storm-Mathisen and Fonnum, 1971) probably involved in both recurrent
inhibition of the principal projection neurons in the region and regu-
lation of local excitability in the dendritic tree that receives the
major excitatory inputs (Storm-Mathisen and Fonnum, 1971). A seroto-
nergic input, mainly derived from median raphe nucleus (Lorens and
Guldberg, 1974) excerts an inhibitory action on the hippocampus
(Stefanis, 1964; 1968). The catecholamine level in the hippocampus ‘s
low and is mainly located in noradrenergic fibers, which originate in
the brainstem, and releases noradrenaline excerting a depressant
action on the pyramidal cells (Segal and Bloom, 1974; 1976). The dopa-
mine content of the hippocampus is less than 57 of the noradrenaline
level (Bischoft et al, 1979). A restricted dopamine input arising in

the substantia nigra (Swanson, 1982) to the hippocampus and area den-

tata is however believed to exist (Scatton, 1980).
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1.4 Toxic damage to the hippocampal formation

Hippocampus appears to he extremely sensitive to the action of several
neurotoxic compounds such as kainic acid (Olney et al, 1974),
3-acetylpyridin (Cogeshall and Mac Lean, 1958), glucocorticoids
{Sapolsky, 1985), trimethyltin (Brown et al, 1979) as well as to cell
loss induced by ischemia (Kirino, 1984), hypoglycemia (Auer et al,
1984), seizures (Folbergrova et al, 1981) and Alzheimers disease

(Henke and Lang, 1983).

The selective vulnerability of the hippocampus was recognized early in
the history of neuroscience, and the differences in vulnerability of
the hippocampal subfields has been well described (Friede, 1966).
However, so far it has not been possible to draw any conclusions about
the mechanisms behind selective vulnerability of neuronal tissue. As
no correlation has been demonstrated between regional cerebral blood
flows and regional neuronal necrosis (Wieloch, 1985) the wvulnerable
neurons are thought to be subject to local stress, or to posess par-
ticular properties making them prone to insults. The pyramidal cells
in the hippocampus and cortical regions as well as the cerebellar
Purkinje cells are thought to possess a high vulnerability to anoxic
damage due to their large soma and high metabolic activity (Norton,
1980). A striking common property of the brain areas selectively
vulnerable to an ischemic insult, CAl and subicular region of the hip-
pocampus, hilus of area dentata, lateral septum,the amygdaloid nuclei,
entorhinal cortex, the olfactory tubercle and the reticular nucleus of
the thalamus (Wieloch, 1985), is that they all receive a dense excita-
tory aminoacidergic innervation (Foster and Fagg, 1984, Wieloch,
1985). The density and subtype distribution of excitatory amino acid
receptors on postsynaptic membranes have been shown to posess patterns
related to selective vulnerability (Monaghan et al, 1983). The intra-
cellular second messenger used by the excitatory amino acids is not
yet identified (Wieloch, 1985), however 1ionic movements over the
plasma membrane have been suggested to be possible mediators of the
neurotoxic actions of these substances. Hypotheses regarding such phe-
nomena include either an excessive influx of calsium (Siesjg, 1981) or

an enhanced chloride influx into cells (Wieloch, 1985).
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1.5 The aim of the study

The aim of the present study was to charachterize the development of
the toxic damage in hippocampus induced by trimethyltin. Previous stu-
dies have shown that trimethyltin may produce selective damage to the
hippocampal pyramidal cells (Brown et al, 1979). It was therefore
interesting to study this damage as a model for neurotoxic degenera-
tion in the hippocampus. By using neurochemical, histochemical and
neurophysiological tecniques we wanted to compare the time course of
changes in the different parameters and then study in detail the
effect of this compound on the biochemical events of synaptic trans-
mission. Based on the results from these experiments we chose to study
neurophysiological changes in the hippocampus in an investigation of a

possible neurotoxic action of the organic solvent toluene.

2 RESULTS AND DISCUSSION

2.1 Trimethyltin

Trimethyltin induced hippocampal damage was detected by neurochemical,
histochemical and neurophysiological methods at different develop-
mental stages of the degenerative process (paper I). In vitro studies
showed that the neurotransmitter release, high affinity uptake and

receptortinding are interupted at low concentrations of trimethyltin

EC:’ (paper II). The effect on release was quantitatively different for
&:?: CABA and L-glutamate (paper II). A similar quantitative difference
.;- between the release of GABA and D-aspartate was observed when varying
Fi? concentrations of (€17 was 1included in the perfusion buffer
s

et (paper 11I).
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2.1.1 Neurochemistry

Neurochemical markers spesific for a certain cell population is fre-
quently chosen as a measure for the number of actively functioning
cells of the population under study in a brain region. Glutamate
decarboxylase (GAD) is located in the nerve endings of GABAergic
neurons while choline acetyltransferase is located in the cholinergic
nerve endings. As there 1is no enzyme spesific for glutamergic ter-
minals, the high affinity uptake of glutamate, spesifically present in
glutamergic synaptic terminals, is used as marker for glutamergic
neurons. A reduction in the activity of the markers is seen when

neurons are completely degenerated (Fonnum, 1977).

The injection of TT in rats produced a gradually increasing loss of
activity of the high affinity uptake of glutamate in the hippocampal
CAl region (paper I). Five weeks after the first of three weekly
injections of 3 mg/kg TMT, a 68% reduction in high affinity uptake of
glutamate was found. The first significant change was detected four
weeks after the first injection (paper 1). These results indicate that
a complete degeneration of a fraction of the glutamergic nerve ter-
minals was obtained after four weeks. A single large dose of TMT
(8 mg/kg) produced a significant loss of glutamergic neurons (33%)
seven days after the injection and increasing to a 427 reduction after
3 weeks (paper I), suggesting a faster destruction process after a

single, large dose of TMT than after several smaller doses.

The GABAergic and cholinergic markers were not reduced after the TMT
treatment of the rats (paper I). A selective destruction of gluta-
nergic neurons seems to take place. Previous studies have reported
changes also in the CABAergic markers, a reduced concentration of CARA
within the hippocampus (Mailman et al, 1983) and a reduced high affi-
nity uptake of [3H] CABA has been reported (Doctor et al, 1982). The
reduced uptake of GABA was detected 2 hours following administration
of 4 ng/kg TMT i p (Doctor et al, 1982) suggesting a direct effect on
the active transport rather than a cellular degeneration of the basket
cells utilizing GABA as their transmitter. The cholinergic activity

was increased five weeks after the nultiple injection schedule
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(paper 1). This may represent sprouting of surviving axons, previously
described after lesions in the area dentata (Matthews et al, 1976) and
in the hippocampus (Gage et al, 1983; Dravid and Van Deusen, 1984).
The phenomenon termed reactive synaptogenesis in many cases represents
heterotypic reconstruction not associated with functional recovery

(Mc Couch et al, 1958).

2.1.2 Histology

Histological examinations of the brains of TMT intoxicated rats show
that the CA4 and ventral CA3 pyramidal cells are the most vulnerable
to toxic damage produced by TMT (paper I; Brown et al, 1979; Chang and
Dyer, 1983; Valdes et al, 1983). The CAl pyramidal cells are less sen-
sitive to TMT induced degeneration, they do not disappear completely
during the time course of our study as do the CA3 and CA4 pyramidal
cells. Differences in vulnerability of the hippocampal subfields has
been described in several instances (Friede, 1966) and has been pro-
posed to be due to differences in their chemical composition (Friede,
1966). A sharp chemical border exists between CAl and CA2-3 (Friede,
1966), corresponding well with their different reaction to toxic

damage.

DPegenerating neurons are found in the CA3 and CA4 subfields 21 days
after the first of three weekly injections of TMT (3 mg/kg) (paper I).
At this time no change is found in the biochemical parameters. Simi-
larly after a single injection of TMT (8 mg/kg), degenerating neurons
are found in CAl, CA3 and CA4 hippocampal subfields three days post
injection, that 1is four days prior to any reduction in high affinity

uptake of glutamate (paper I).

2.1.3 Neurophysiology

The electrical activity in the hippocampus 1s a well described charac-
teristic of this region, consisting of two distinguishable wave pat-
terns closely related to the behavior of the rat. (he electrographic

record of a motionless rat consists of low frequency asvnchronous
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waves and includes variably occuring large amplitude waves (Vander-
wolf, 1969). This EEG pattern is referred to as irregular activity.
Rhytmic slow activity (RSA) accompanies voluntary movements such as
walking, rearing and mooving the body. RSA is typically regular
synchronous electrical waves with a frequency of 7-8 Hz (theta-acti-
vity) in the walking rat (Vanderwolf, 1969). A reduction in the fre-
quency of the theta activity occures two weeks after the first of
three weekly injections of TMT (3 mg/kg), and further frequency reduc-
tion occures between day 14 and day 21 together with a total loss of
regular waves (paper I). A single dose of TMT (8 mg/kg) produces a
reduction in the theta frequency three days after administration of
the T™T (paper I; Ray, 1981). Both amplitude, frequency and incidence
of theta are reduced. A total loss of regular waves occures during the
third week after a single TMT injection (paper I). Ray (1981) observed
that the decreased theta was preceded by an initial period of
increased incidence and increased frequency of the theta activity and
a presence of theta waves in the immobile rats. Human intoxications
with organic tin compounds also produces general disturbance and

dysrhytmia of the EEG-recording (Priill and Rompel, 1970).

The hippocampal response to evoked potentials increases during the
first 2-4 days after TMT administration and falls gradually from day
4-6 onward (Ray, 1981; Hasan et al, 1982). In the initial period of
TMT intoxication an increased vulnerability to production of seizures
is also seen f/Oyer et al, 1982b). A phase of 1increased neuronal
excitability .s suggested to precede neuronal damage (Ray, 1981). The
increased ac:ivity of the pyramidal cells may also stem from an
increased activity of the mossy fihers due to a reduction in the
inhibitory activity of the basket cells on the granule cells, showed
by Dyer and Boyes (1984). The possibilty of increased occurence of
seizures as the cause of neuronal damage in the hippocampal formation
was disproved by Zimmer et al (1985), showing that continously
treatment with an anticonvulsant agent did not affect the pathological
changes after TMT treatment. Doctor and Fox (1982) even found a
reduced responsiveness to electroshock seizures following i p
injection of 0.7 and 3.5 mg/kg TMT to mice. These results indicate

that the neuronal mechanisms of action of TMT differs from the action
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of kainic acid, a neurotoxic compound with a similar selective

neuronal damage as TMT. Kainic acid is dependent upon seizure activity

)
>
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for production of pathological changes in the hippocampus (Ben-Ari et
al, 1980). In contrast to the observations on increased excitability
of the hippocampus, TMT has a depressive effect on hippocampal
pyramidal cells in vitro, suggesting a decreased excitability of the
postsynaptic neuron, or a decreased release of transmitter during

stimulation of the pyramidal neuron (Allen and Fonnum, 1984).
2.1.4 In vitro measurements of chemical transmission

Several neurochemical mechanisms may be involved in the observed
neuronal changes during TMT intoxication. In vitro alkyltin compounds
causes a disruption of mitochondrial function (Aldridge, 1958; Selwyn,
1976) 1including an inhibition of oxidative phosphorylation (Selwyn,
1976). The ability of neuronal cells to perform chemical transmission
nakes them vulnerable to any change in biochemical activity. Both the
release, high affinity uptake and spesific receptor binding of the
neurotransnitter is affected by TMT at different concentration levels.
The release of L—[3H] glutamic acid and D—[3H] aspartic acid from
synaptosomes in vitro is enhanced by 20% at TMT concentrations from
50 uM to 1 wM (paper II). At the 50 uM concentration level a 25 - 30%
reduction in the high affinity uptake (paper II) and in spesific
receptorbinding of glutamate (paper II) is observed. The release of
[3H] GABA is unaffected by the presence of TMT at concentrations up to
1 oM (paper II), while the high affinity uptake of [°H] GABA is

]

reduced at the highest TMT concentrations (0.5 - 1 mM) and receptor
}3 binding at 50 nm ligand concentration is inhibited with 100 uM or more
:i: TMT in the medium. The lowest concentration of TMT which interupts the
"od
EJ neurotransmission, 50 uM (= 50 nmol/ml), is about five times the in
L

vivo concentration after injection of a neurotoxic dose of TMT. Brown
i et al (1979) reports that the minium amount of TMT in brain tissue to
A
- cause neuronal necrosis is 8.6 nmol/g wet wt.
b
r‘ The TMT stimulated release of glutamate 1is much smaller but has the
I
Q: same characteristics of the K" stimulated release in that it is Ca‘t
[
‘j dependent and TTX independent (paper II). The effect of TMT on gluta-
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mate release is quite different from the effect on ACh release, which
is inhibited during depolarization but unaffected at low K% concentra-
tions (5 mM) (Morot-Gaudry, 1984) in the presence of high concentra-
tions of TMT (0.5 - 3.5 mM). Morot—Gaudry showed that the alkyltin was
unable to inhibit transmitter release induced by a calcium ionophore,
and suggested that the action of TMT is an interference with calcium
conductance. The effect on ACh transmission could also be secondary
to an inhibition of mitochondrial function (Aldridge, 1958; Selwyn,
1976), since the synthesis of ACh in the cytosol is dependent upon
acetyl-Co A formed in the mithochondria (Quastel, 1977).

Organotin compounds have been shown to induce several effects on
membrane systems. They are associated with Cl17/OH™ exchanges in
nitochondria (Selwyn et al, 1970), erythrocytes and liposomes (Selwyn
et al, 1970; Motais et al, 1977; Wieth and Tosteson, 1979) and in
pancreatic B-cells (Pace and Tarvin, 1983). This exchange could
possibly explain the effect of TMT on glutamate release through a
change in the relation between internal and external Cl™ concentra-
tion. A reduction in the extracellular Cl1™ concentration induces a
glutamate release similar to that induced by high potassium (paper
I1IT; Hardy et al, 1984), but do not have the same stimulatory effect
on the release of the inhibitory transmitter GABA (paper III). A
reduction in the extracellular Cl~ concentration from 145 mM to 125 mM
is sufficient to produce a significant release of transmitter from
glutamergic and aspartergic neurons (paper III), while the release of

CABA is unaffected by the same change in Cl -concentration.

The putative neurotransmitter amino acids glutamate and aspartate can
cause neurotoxic effects when present in excess 1in nervous tissue
(Olney et al, 1971; Olney, 1976). A delicate balance may exist between
the function of these substances as excitatory transmitters and their
capasity to cause nerve cell death. The increased leakage of tritiated
transmitter together with a reduced uptake (paper II) should give an
increase 1in the extracellular level of the neurotransmitter in the
synaptic cleft. This effect seems to be spesific for glutamergic and
aspartergic neurons at 1low doses (paper II and TIII). This 1is 1in

agreement with Dyer et al (1982a) who suggested that TMT may induce an
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excitotoxic action. The reduced post—-synaptic activity in the presence
of TMT (paper II; Allen and Fonnum, 1984), should however, reduce the
effect of an excess glutamate efflux into the synaptic cleft. Another
possibility of the site of primary toxic damage is that it occurs pre-
synaptically in the terminal region as a result of ionic disturbances
and transmitter depletion (paper II; Selwyn, 1970). The resulting
degeneration process could be a retrograde degeneration of the axon.
Electronmicroscopic examinations of =2arly damage shows degenerating
axons in chronically intoxicated rats (Bouldin et al, 1981), but no
descriptions on terminal structures have been given in the littera-

ture.

2.2 Toluene

On the background of the results from TMT studies we chose the hip-
pocampal electric activity as the parameter in an 1investigation of
possible neurotoxic effects of the organic solvent toluene. Toluene
inhalation produces disruptions and frequency changes in the hippocam—
pal theta activity (paper IV; Takeuchi and Hisanaga, 1977). The time
course of changes in the hippocampal electric activity follows the
same phases as described for TMT (Ray, 1981; Hasan et al, 1982;
paper I). After an initial increase in the frequency and an increase
in the occurence of theta waves, there is a reduction in the frequency
and a gradually increased disruption of the theta waves (paper IV).

High toluene concentrations (4000 ppn) will produce acute frequency

reduction in the theta waves, when recorded during and within two

ii- hours after exposure (Tackeuchi and Pisanage, 1977).

.

o

t%: One nonth of recovery after the termination of toluene exposure do not
X ' allow any improvements to occure in the theta-activity, suggesting
Ez: that an irreversible brain damage {s developed (paper IV). A neuronal
(SIS

L damage causing disruption in theta activity could be located in any of
};2 the brain nuclei involved in generating or regulating the theta rhytm.
ﬁ‘ The main source for hippocampal desynchronization is thought be the
e

i:- median raphe nucleus (Vertes, 1982), while the medial pontine region
::' of the reticular formation seems to be the source of hippocampal syn-
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chronization (Vertes, 1982). Brain stem generation of hippocampal
activity is mediated by the medial septum (Vertes, 1982). By use of
surgical lesions it has been shown that lesions in the medial septum
can give a complete loss of hippocampal rhytmic slow activity (theta)
(Andersen et al, 1979), while lesions in the brain stem and pontine
area give a reduction in frequency without any qualitative disturban-
ces (Vertes, 1982). The reason for this lack of effect of braln stem
lesions in abolishing theta activity is thought to be the diffuse
organization of the ascending brain stem systems and the fact that
several pathways maintain the theta activity (Vertes, 1982). Studies
on pharmacologic manipulations of the theta-rhythm describes acute
effects, and our experiments can therefore not be readily compared to
any of these studies (Stumpf, 1965). The toluene level in the brain
tissue declines with the same rate as the bloodlevel, and 24 hours
after an inhalation exposure the brain level is 0.17 of the con-
centration at the termination of exposure (Pyykks et al, 1977). Ve
have measured the hippocampal FEG 48 hours after exposure each week

and hence no acute effects have been detected.

Toluene produces alterations in CNS excitability (Benignus, 1981),
sensory funtion (Pryor et al, 1983a; 1983b; Dyer et al, 1984) and
abnormalities in EEG recordings (Takeuchi and Hisanaga, 1977), all of
which might be previous effects to the observed total loss of hippo-
campal rhytmic activity (paper IV). Several cases of abnormal EEG in
humans, either occupationally or voluntary exposed to toluene 1is
reported (Andersen and Kaada, 1953; Knox and Nelson, 1966; Seppdldinen
et al, 1980; Grasso et al, 1984).

Changes in biochemical parameters related to aminergic and cholinergic
neurons occurs in hippocampus (Yamawaki et al, 1982; Honma, 1983),
brain stem (Yamawaki et al, 1982; Rea et al, 1984) and hypothalamic
nuclei (Andersson et al, 1980) after short term exposure of rats to
toluene levels from 500 to 8000 ppm, supporting the suggestion of a
neuronal damage in the theta-generating neural axis from the brain

stem through midbrain and septal nuclei{ to the hippocampus.
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3 CONCLUSIONS

1) Trimethyltin (TMT) caused a selective neuronal damage to the hippo-
campal subfields CA3, CA4 and partly to CAl. The cell loss in these
areas increased gradually during one month after the first admi-
nistration of TMT.

2) The hippocampal damage produced by TMT could be detected by either
neurophysiological, histological or biochemical methods, the
neurophysiological being the most sensitive.

3) Degenerating cells in the hippocampus after TMT-intoxication are
glutamergic.

4) TMT induced release of glutamate from resting cells, and inhibited
reuptake and receptor binding of this neurotransmitter. Release of
GABA was not induced by TMT, however reuptake and receptor binding
of GABA were inhibited.

5) The synaptosomal efflux of D-aspartate is much more sensitive than
the efflux of GABA to changes in extracellular Cl1~ concentrations.

6) Toluene produced irreversible loss of hippocampal theta activity
after exposure to 500 ppm of the solvent for 8 hours/day, 5 days/
week in 12 weeks.

7) Following toluene exposure an initial period of increased synchro-
nous electric activity in the hippocampus was followed by a gra-
dually 1increased disruption and a reduction in frequency of the
theta waves.
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Changes in Neurobiological Parameters in the Hippocampus

Liv UNNI NAALSUND, CHARLES N. ALLEN' AND FRODE FONNUM

Key words:

After Exposure to Trimethyltin

Norwegian Defense Research Establishment, Division for Environmenial
Toxicology, P.O. Box 25, N-2007 Kjeller, Norway

ABSTRACT: The effects of trimethyitin (TMT) on naurotrans-
mitters, morphological changes and physiological activity of
the hippocampus were studied. A single injection of TMT (8
mg/kg) decreasad the high affinity uptake of glutamate (HA-
Glu), which is a marker for giutamergic nerve terminals, after 7
days. The maximal reduction of HA-Glu was 42% and was ob-
tained on postinjection day 21. Glutamate decarboxylase (GAD)
and choline acetyitransferase (ChAT), markers for GABAergic
and cholinergic structures, were not affected. The electrical
activity of the hippocampus recorded through chronically im-
planted electrodes was altered by day three postinjection. The
amplitude of the hippocampal electrographic record gradually
decreased and the EEG ceased to be correlated with the rats’
behavioral state. Fink-Heimer staining showed degenerating
neurons within the subiculum, CA1, ventral CA3 and CA4 hip-
pocampal subfields.

TMT (3 mg/kg) injected once a week for three weeks de-
creased the HA-Glu significantly 21 days after the firstinjection.
The HA-Glu was reduced by a maximum of 68%. The activity of
ChAT was slightly increased only at day 35 postinjection while
the GAD activity was not significantly reduced over a 21 day
period beginning on day 14. Fink-Heimer staining showed de-
generation of narve cells within the CA1, ventral CA3 and CA4
hippocampal subfields. .

Both injection schedules produced degenerating neurons
in the entorhinal cortex. The neurons of the dorsal CA3 region
and the granule cells of the dentate gyrus were not lesioned by
aither TMT injection. The relationship between the behavioral,
physiological and neurochemical changes induced by TMT will
be discussed.

Trimethyltin, Hippocampal EEG, High Affinity Glutamate Up-
take, Neurotransmitters

Please send requests for reprints to Or Frode Fonnum

‘Current address: Department of Pharmacology. University of Maryland School ot Medicine. Baitimore,

Maryland 21201, USA
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INTRODUCTION

Trimethyltin (TMT), an organotin
compound, 1s a byproduct in the manu-
facture of dimethylun chloride, a stabiliz-
ing agent for certain plastics. Exposure to
TMT causes neuropathological changes
in the limbic system of the brain (Bouldin
et al., 1981, Brown er al., 1979). Several
studies have demonstrated that the hip-
pocampal pyramidal ceils which are lim-
bic system neurons, degenerate after ex-
posure to TMT (Bouldin er al., 1981;
Brown er al., 1979; Dyer er al., 1982a;
Mushak er al, 1982). Degeneration of
these neurons would be expected to pro-
duce changes in the neurochemical
markers utilized by the affected path-
ways. Forexample, the pyramidal cells of
the ventral CA3 and CA4 hippocampal
subfields appear to be particularly sensi-
tive to TMT5 cytotoxic effects (Bouldin er
al., 1981. Brown er al., 1979). These neu-
rons project axons which synapse within
the stratum radiatum of the hippocampal
CAl subfield (Hjort-Simonsen, 1973).
This projection (the Schaffer collaterals)
is believed to release glutamate as a neu-
rotransmitter (Nadler er al., 1976; Mal-
the-Sorenssen ez al., 1979). The high af-
finity uptake of glutamate (Fonnum and
Walaas, 1979), which is a marker for glu-
tamergic neurons (Fonnum er al., 1981),
was examined 1n the TMT lesioned ani-
mals. The hippocampus also contains in-
hibitory interneurons, the basket celis,
which are believed to release gamma-
aminobutyric acid (GABA) as a neuro-
transmitter (Storm-Mathisen. 1977). In
addition the hippocampus contains cho-
linergic terminals derived from the me-
dial septum and the nucleus of the diago-
nal bank (Fonnum er al., 1970; Storm-
Mathisen. 1977). Electrophysiological
evidence suggests that TMT will decrease
inhibition within the hippocampus ( Dyer
et al., 1982b). It 1s not clear whether this
reduction i1s due to a loss of the basket
cells or their funcuonal inhibition. Such

T R W T R N W PN T W W ™ ."F-_"i_'ﬂ."“."?"1

38

NAALSUND ET AL

an effect could also be mediated via the
cholinergic input on the basket cells. We,
therefore, utilized neurochemical assays
to examine the effects of TMT on the
CA3-CA4 Schaffer collateral pathway
and the hippocampal inhibitory interneu-
rons.

The hippocampal electrical activity
is a well described characteristic of the
hippocampus (Vanderwolf, 1969; Win-
son, 1974). The destruction of hippocam-
pal pyramidal cells should alter the phy-
siological activity of the hippocampus. In
fact TMT first increases. then decrease
the amplitude of hippocampal evoked
potentials (Zimmer er al., 1982). Hence,
we recorded hippocampal electrographic
activity to establish the correlation be-
tween degeneration of the pyramidal cells
and physiological alterations of the
hippocampus.

MATERIALS AND METHODS

Experimental Animals

Male Wistar rats were used in all
experiments. The animals were housed in
group cages containing 4-7 rats. Rats im-
planted with electrodes were placed in
individual cages. The animal room was
maintained ona |2 hour light-dark cycle.
The rats were given food and water ad
libitum.

Drug Injection

Trimethyltin chloride was injected
on two dosing schedules. The “single” in-
jection schedule consisted of a solitary

injection of TMT chloride (8 mg; kg, ip) .

in corn otl on experimental day 0. The
“multiple™ injection schedule involved
three injections of TMT chlonde (3
mg kg. ip) in corn oil at one week inter-
vals. The injections were made on davs 0,
7. 14. The injection volume in all cases.
was | ml kg Trimethvlun chlonde was
purchased from Aidrich-Europe
(Belgium}.
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TRIMETHYLTIN AFFECTS THE HIPPOCAMPUS

Neurochemical Assays

For uptake and enzyme activity stu-
dies the rats were decapitated, the brains
removed and placed on ice. The hippo-
campi were dissected out and rinsed in
cold physiological saline. Slices (800 um)
were cut transverse to the long axis of the
hippocampus with a Sorvall tissue chop-
per (Model TC-2). The CAl subfield and
subiculum including stratum oriens, py-
ramidale, radiatum and moleculare (Fig.
1) were dissected free and homogenized in
cold 0.32 M sucrose (0.5 ml) with a glass-
Teflon homogenizer. Samples forthe HA
glutamate uptake were analyzed imme-
diately. The homogenates were kept fro-
zen (-20°C) and enzyme analysis per-
formed within two days after activation
of the enzyme.

The HA uptake of glutamate was
chosen as a marker for glutamergic nerve
terminals (Fonnum er al., 1981). The de-
termination of the HA uptake of glutam-
ate has been described in detail elsewhere
(Fonnum er al., 1977). Briefly 2 ul of

DISSECTION
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homogenate was added to 0.5 ul Tns
Krebs medium, incubated with L-3H-glu-
tamate for 3 min at 25°C and the uptake
terminated by Millipore filtration. The
amount of labelled glutamate accumu-
lated in the tissue was measured by liquid
scintillation counting.

Choline acetyltransferase (ChAT; EC
2.3.1.6) and glutamate decarboxylase
(GAD:EC4.1.1.15) were chosen as neur-
ochemical markers for cholinergic and
GABAergic nerve terminals, respectively.
Previously described methods were used
for determination of GAD (Fonnum et
al.,, 1970) and ChAT (Fonnum, 1975%).
Protein content was measured by the me-
thod of Lowry (Lowry er al., 1951).

Neurophysiology

Surgical preparation of the rats (275-
325 g) was conducted under diazepam
(Valium, Roche) and fentanyl, fluanisone
(Hypnorm, Mekos) anesthesia. The rat

was placed ina stereotaxic frame, an inci-
sion made in the skin overlying the skull

DISSECTED AREA

PYRAMIDAL CELLS

FIG. 1. The dissection for uptake and enzyme activity studies was pertormed on a
800 um slice cut out at the ievel A 3400 um (Komig and Klippel. 1963) The figure
shows the hippocampus omitting other structures in the plane The dissected area.
which is marked in the higure consist of the CA1 subtieid. including stratum oriens
pyramidale, radiatum and moleculare, and the subiculum
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and the connective tissue scraped away.
Stainless steel screws were set in the skull
to serve as anchors. A bipolar electrode of
twisted stainless steel wire (200 um) insu-
lated except for the tip was implanted in
each hippocampus (coordinates AP +3.2;
L +-2.5; P -2.1 bregma dura, Konig and
Klippel, 1963). The electrodes were co-
vered with dental acrylic which secured
the electrodes to the stainless steel screws.
The rats were allowed 10 days to recover
before experimentaticn.

The hippocampal electrical activity
from awake freely moving rats was re-
corded through an EEG preamplifier
(Grass model 7PIA) and recorded on a
G.ass model 7 polygraph. The signal was
amplified and filtered (highpass | Hz,
lowpass 35 Hz). Forty seconds of electri-
cal activity were recorded every ten min-
utes during each hour long recording ses-
sion. The single injection schedule rats
were recorded on days 0, 3.7, 14 and 21.
The multiple injection rats were injected
onuays 0, 7, 14 and recorded prior to the
injection of TMT and they were recorded
ondays 21 and 28. The rat’s behavior was
simultaneously noted on the paper record.

Histology

The rats were killed bv decapitation
and the brain removed. The brain was
frozen using liquid carbon dioxide and
sectioned (20 um) using a refrigerated
cryostat. The slices were allowed to air
dry for two hours then fixed overnight
using a NaPO, butfered 10 formaliin
solution. The slices were then stained bva
modification of the Fink-Heimer method
{Hjort-Simonsen. 1976). Adjacent sec-
tions were stained with Cresyl-Violet.

Statistics

The neurochemical data were initially
analvzed for ditferences ot means by an
analysis of vanance (ANOVA). Groups
ot data which contained unequal means
were turther analvzed bv the Neuman-
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Keuls multiple range test. A probability
of p<0.05 was accepted as significant in
all cases (Zar, 1974).

RESULTS

Neurochemistry

Singie injection schedule. The single
injection of TMT significantly altered
the HA uptake of glutamate within the
hippocampal CAl subfield (Table |). The
HA-uptake was significantly reduced on
day 7 and continued to decrease for the
next 14 days. The choline acetyltransfe-
rase and glutamic acid decarboxylase ac-
tivities were not atfected during this
period.

Multiple injection schedule. The
“multiple” injection schedule of TMT
produced a progressive reduction in the
high affinity uptake of glutamate (Table
2). However, this decrease did not appear
until day 28. The GAD activity was not
affected during the experimental period.
ChAT activity was significantly increased
only on day 35.

TABLE t. The Effects of a Single Trimethyitin
Chioride (8 mg/kg) Injection on Hippocampal
Neurotransmitter Markers

Days
After
Injection HA-Glu GAD ChAT
3 107:4(12) 114=5(7) 95=8(7)
7 77=5(13)° 94=6(13) 110=401 )
14 68x5(13)° 91=5(13) 108=4(73)
21 58=5(13)"" 1526013 105=5¢('3)

All values are presented as percent of non-injected con-
trols =SEM

‘Denctes values which are significantly 2ifferent from 3
day values.

‘“Indicates values significartly different from 3 ana T day
values (Neuman-Keuls muitiple range test p<0 05
The parenthesis ( }indicate the number ot animals ‘ested
Abbreviations. HA-Glu-~righ aftimity giutamate uptake
GAD~-glutamate gecaroboxviase ChAT—choline acetyl-
transterase
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TABLE 2. Hippocampal Neurochemicai Markers
Following 3 weekly Injections (3 mg/kg) of
Trimethylitin Chionde

Days
Alter
First

injection HA-Glu GAD ChAT
22 966(N 102x1(8) 86=10(9)
28 54x9(8)° 94+4(8) 9= 7(
35 32z 104+8(8) 131z15¢8)°"

The rasults arg expressed as percent of non-njected con-
trols =S EM
‘Denotes vaiues which are significantly different from 1
week .alues.

“"Denotes vaiuas significantly diferent from 1 and 2 week

valuas (Neuman-Keuls muitipie range test. p<0.05)

The parenthesis ( ) ndicate the number of amimais 1n
each sampie

Appreviations HA-Glu—nmigh athmty giutamate uptake,
GAD—giutamate decarpoxyiase. ChAT—choline acetyi-
transterase
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Neurophysiology

Preinjection. The hippocampal elec-
trical activity of awake rats consists of
two distinguishable wave patterns (Fig.
2). The electrographic record of a motion-
less rat consists of low frequency, asynch-
ronous waves and includes variably oc-
curring large amplitude waves (Vander-
wolf, 1969). This EEGpattern is referred
to as irregular activity (IA). Rhythmic
slow activity (RSA) accompanies volun-
tary movement and is comprised of regu-
lar synchronous electrical waves (Van-
derwolf, 1969). The RSA of a walking rat
has a frequency of 7-8 Hz.

Single injection schedule. The “sin-
gle” injection of TMT produced progres-
sive changes in the hippocampal electrical

WALKING

IMMOBILE
PREINJECTION R RS LY IRV
3 DaAYS AN L
7 oars R s
1+ DAYS o
21 DAvs O LN

FIG. 2. The hippocampal elect*rical activity recorded before and after a
single injection of TMT The r_-:ords are from a single rat recorded during
two ditferent behavioral states. Immobile describes a motionless but
awake. alert rat Waiking refers to active movement within the recording
chamber The number of days indicate the survival time following a single
injection of TMT (8 mgskg). Note the gradual decrease in EEG ampliitude
wtth increasing survival time and also the small spikes present during
immobility on day 21 The horizontal bar and vertical bar represent 1 sec

and 500 uV. respectively.
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activity of the treated rats (Fig. 2). Three
days after the TMT injection both the [A
and the RSA amplitude were decreased
and the frequency reduced. By day 7 the
RSA frequency during walking had de-
creased from 7-8 Hz to 5-6 Hz. At the
same time the electrographic record dur-
ing alert motionless behavior showed an
increased number of slow waves. The
RSA amplitude on day 14 was decreased
509% to 60% compared to preinjection
controls although regular waves were
present. The large slow waves character-
1stic of ] A were almost completely absent
having been replaced by low amplitude
fast waves. On day 21, the electrical activ-
ity recorded during voluntary movement
consisted of verv low amplitude waves
which did not change when the rat be-
came motionless. However, the EEG of a

NAALSUND ET AL

still rat contained spikes which occurred
every 5 to 20 seconds.

Multiple injection schedule. The
multiple injection schedule of TMT pro-
duced gradual changes in the electrical
activity of the treated rats (Fig. 3). The
electrographic records on day 7 contained
RSA and IA which appeared normal. On
day 14 the RSA amplitude appeared to be
slightly increased and the frequency dur-
ing walking decreased to 5-6 Hz. The ir-
regular activity during motionless but
alert behavior was also increased in am-
plitude and contained more large siow
waves. The EEG characteristics changed
dramatically between day 14 and day 21.
The hippocampal electrical activity con-
sisted of low amplitude slow waves which
did not change as the rats behavior

IMMOBILE WALKING
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- FIG. 4. Patterns of staining for degenerating neurons following a single TMT
i injection. Cross-hatching refers to degenerating pyramidal cells within the
> CA1, subiculum, ventral CA3, and CA4 The fine stippling indicates those
o dendntic areas showing evidence of heavy degeneration. The white vertical
e lines with a black background are degenerating axons within the perforant
:': pathway The staiming inthis areais lighter than thatin the stippled area. The
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.‘ outer 2/3 of the molecular layer of the centate gyrus. These are probably
L“ degenerating terminals of the perforant pathway
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after the injection of a single large dose of
TMT Fink-Heimer staining provided ev-
idence of degenerating axons within CAl,
ventral CA3 and CA4 hippocampal sub-
fields. The subiculum showed only occa-
sionally damaged structures. The resist-
ance of the dorsal CA3 pyramidal cells to
TMT’s neurotoxic effects is similar to
that reported previously (Bouldin er al.,
1981; Brown 2r al., 1979; Valdes er al.,
1983). A slight degeneration was present
in the stratum radiatum and the stratum
oriens of CAl. The entorhinal cortex
contained neuronal cell bodies showing
signs of degeneration.

Seven days postinjection the ventral
CA3 and the CA4 subfields still con-
tained the largest amount of degeneration
(Fig. 4). There were signs of increased
degeneration within the CAl subfields.
The stratum oriens, stratum radiatum
and the stratum lacunosum-moleculare
showed signs of degeneration. Addition-
ally there was evidence of damaged nerve
tissue in the outer portion of the molecu-
lar layer of the dentate gyrus. This may
represent degenerating perforant pathway
terminals originating from entorhinal
cortex neurons (Hjort-Simonsen and
Jeune, 1972). The cresyl-violet stained
sections of day 21 showed the absence of
neurons in the ventral CA3 and CA4
subfields.

Multiple injection schedule. The
multiple TMT injection schedule pro-
duced a pattern of degenerating neurons
different from the single injection sche-
dule (Fig. 6. 7). On day 21, the ventral
CA3 and the CA4 subfield contained evi-
dence of degenerating neurons ( Fig. 5). A
week later. evidence of damaged neurons
was found in the CAl in addition to the
ventral CA3 and CA4 subfields. The neu-
rons within the subiculum and the dorsal
CA3J appeared to be insensitive to TMT's
neurotoxic effects. The perforant path-
way and its termunal tield, the outer 2 3 of
the molecular laver of the dentate gyrus
and molecular layer of hippocampus

NAALSUND ET AL

showed signs of damaged nervous tissue.
On day 35 only the dendritic regions
showed darkly staining areas. The cresyl
violet stained sections showed an absence
of nerve cell bodies in the ventral CA3 or
the CA4 pyramidal cell areas and also a
loss of CAl neurons (Fig. 7).

DISCUSSION

Trimethyltin produces physiological,
morphological and biochemical changes
within the hippocampus. Following a
single TMT injection the histological and
physiological changes occurred within 3
days while the biochemical alterations
occurred after 7 days. With the multiple
injection schedule the EEG was changed
after 14 days while the histological and
biochemical parameters were changed
after 28 days.

The CA4 pyramidal cells and the
ventral CA3 pyramidal cells are the most
sensitive to the toxicant actions of TMT.
These pyramidal cells have almost com-
pletely disappeared by 21 days after a
single TMT injection or by 35 days after
beginning the multiple injection schedule.
The biochemical or morphological char-
acteristics which make this subfield so
sensitive to TMT exposure are unknown.
The CAl pyramidal cells are less sensitive
to TMT induced degeneration. Although
neurons within this subfield degenerate
they do not completely disappear (Fig. 6:
Dyer et al., 1982a). The pattern of TMT
induced degeneration of the CAl and
CA4 pyramidal cells is similar to that of
previous investigations (Brown er al,
1979, Bouldin er al., 1981, Mushak et al.,
1982, Valdes er al., 1983). The sparing of
the dorsal CA3 neurons observed 1n the
present study has been observed by these
research groups although a progressive
degeneration of the pyvramidal cells be-
ginning in the CA4 region and extending
as far as the CA2 (Dver er al.. 1982) has
also been reported. A combination of dif-
ferences between dosing regimens. injec-
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FIG.5. Schematic drawing of the hippocampus showing the degenerating patt-
ern in major subdivisions after multiple TMT njections. The black regions
indicate areas containing degenerating pyramidal cells. The stippling refers (o
areas heavily stained for the presence of degenerating fibers. The dark slanted
lines indicate lighter staining degenerating areas. Abbreviations: S—subicu-
lum, F—fimbrna, P—pyramidai ceil body layer. O—stratum oniens. R—stratum
radiatum, L. m—stratum lacunosum-moleculare. Lu—stratum lucidum, H—hi-
lus of tasciae dentatae, G—dentate granule cells, m—molecular layer of the
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ject axons. the Schaffer collaterals, which
synapse on dendrites of the CAl neurons
(Hjort-Simonsen, 1973). The terminals of
the CA3 and CA4 neurons are believed to
release glutamate as a neurotransmitter
(Nadler er al., 1976; Malthe-Sorenssen et
al., 1979). The first signs of degenerating
cell bodies appear in the CA3 and CA4
region 3 days after a single dose of TMT
(8 mg, kg, ip). At this time the high affin-
ity glutamate uptake, a marker for glu-
tamergic terminals, remains at control
levels. The HA Glu is reduced 25% seven
days postinjection (Table 1). Simultane-
ously there is evidence of degeneration
within the stratum radiatum, the terminal
zone for the Schaffer collaterals. Although
it would be nice to say we can identify
degenerating terminals the staining within
the stratum radiatum probably includes
degenerating dendrites of the CAl neu-
rons. However, the data clearly demon-
strates that the CA3 and CA4 cell bodies
show the first degeneration after TMT
exposure followed by degeneration in the
terminal fields. The data reported here
supports the conclusion of Valdes er al.,
(1983) that the decreased high affinity up-
take of glutamate is secondary to the loss
of pyramidal cell neurons.

The activity of glutamic acid decar-
boxylase, a specific marker for GABAer-
gic terminals is not altered by TMT expo-
sure. These observations suggest that the
basket cells, inhibitory interneurons
within the CA1l subfield are not lesioned
bv TMT. Several authors have suggested
based on physiological and biochemical
data that TMT alters the activity of the
inhibitory interneurons. For example,
TMT exposure reduces the concentration
of GABA within the hippocampus ( Mail-
man et al., 1983) suggesting that TMT
will affect the GABAergic systems. The
decreased GABA concentration may be
secondary to a reduction in the high affin-
ity uptake of 3H-GABA which appears to
occur 1n a nonspecific manner ( Doctor er
al., 1982). The decreased GABA levels
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may be the mechanism which reduces the
recurrent inhibition of the CA3 region
following exposure to TMT (Dyer ez al.,
1982b).

Trimethyltin in addition to killing
pyramidal cells will alter the physiologi-
cal activity of the hippocampus (Allen
and Fonnum, 1984). TMT reduces the
amplitude of dentate granule cell evoked
potentials generated by stimulation of the
pyriform cortex (Zimmer er al., 1982).
The activation of the granule cells by py-
riform cortex stimulation is via a path-
way which projects from the pyriform
cortex and synapses upon neurons of the
entorhinal cortex (Hjort-Simonsen,
1973). The entorhinal neurons project
axons via the perforant pathway synaps-
ing on the granule cells of the dentate
gyrus. Zimmer and co-workers (Zimmer
er al., 1982) postulated that the transmis-
sion failure occurred within the entorhi-
nal cortex. The histological data pres-
ented here supports the idea that the
reduction in granule cell evoked poten-
tials is due to a degeneration of entorhinal
cortex neurons and axons of the perfor-
ant pathway. The degeneration within the
outer 2/ 3 of the molecular layer repres-
ents terminal degeneration of the perfor-
ant pathways since this is the area where
they are known to synapse (Hjort-Si-
monsen, 1973). The evoked potentials
reach a very low amplitude between 8 to
20 days post injection. Using a similar
dose(8.0mg. kgvs.7.5mg kgby Zimmer
et al., 1982) we observed degenerating
axons beginning on day 4. However,
neurons of the fascia dentata are not im-
mune to TMTs effects. Bouldin er al.,
(1981) reported that short term high
doses (5 mg, kg. day. 3 days) produced
damage which is limited to granule cell
neurons in the fascia dentate while in low
dose long term (! mg kg on alternate
days. 14 injections) animals the neuronal
loss was much more marked in the pv-
ramidal neurons of the hippocampus.
Brown er al. (1979) have also reported
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damaged cells of the fascia dentata after a
single high dose injection. Damage to the
granule cells contributing to the degener-
ation seen in the molecular layer could
not be ruled out.

The hippocampal electrical activity
recorded in these experiments is an extra-
cellular correlate of the activity of intra-
cellular potenrtials. For example, the
rhythmic slow activity generator appears
to be within the cell body layer (Bland er
al., 1976; Green et al., 1979). Fujita and
Sato(1964) demonstrated the presence of
an intracellular RSA which was com-
posed of excitatory postsynaptic poten-
tials. The generation of the electrical
waves is thought to be a combination of
excitation of the pyramidal cells and an
inhibition by the basket cells (Kandel er
al., 1961; Anderson and Eccles, 1962).
These observations show that an intact
hippocampal neuronal circuitry is neces-
sary for the generation of normal hippo-
campal electrical activity. The loss of py-
ramidal cells after TMT exposure would
be expected to alter the physiological ac-
tivity of the hippocampus. TMT expo-
sure alters the electrical activity of the
hippocampus within 3 days (Fig. 2; Ray,
1981). These alterations occur at a time
when the first signs of degeneration ap-
pear in the hippocampus (Fig. 4). Ray
(1981) recorded an increased RSA ampli-
tude from the granule cells on days 2-4
following a single 10 mg, kg oral dose of
TMT. These observations contrast with
the decreased amplitude of the present
studies (Fig. 2). These opposite findings
suggest differential etfects of TMT on the
CA1 pyramidal cells and the granule cell
neurons. The dysfunction of the hippo-
campus electrical activity may provide a
clue to the deficits in behavioral task per-
tormance following TMT treatment
{Miller er al., 1982; Swartzwelder er al.,
1982; Walsh er al., 1982).
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THE EFFECT OF TRIMETHYLTIN ON THREE GLUTAMERGIC AND GABAERGIC 2?
TRANSMITTER PARAMETFRS IN VITRO; HIGH AFFINITY UPTAKE, RELEASE “
AND RECEPTOR BINDING.

LIV UNNI NAALSUND AND FRODE FONNUM

Norwegian Defence Research Establishment
Division for Environmental Toxicology

P.0.Box 25, N-2007 Kjeller, Norway
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ABSTRACT

The effects of trimethyltian (TMT) on high-affinity uptake, release and
sodium-independent binding of glutamic acid and y-aminobutyric acid
(GABA) were studied in vitro in homogenates of hippocampal tissue. TMT
(10 uM) increased the release of glutamic acid from synaptosomes in
the resting state (5 mM K'), whereas the release of CABA was only
sligthly affected. High sffinity uptake of glutamate was inhibited by
TMT in the same concentra:ion range as release. The uptake of GABA was
only affected by TMT-concentrations from 500 uM to 5 mM. The sodium
independent binding of both glutamate and GABA, usually assumed to be
binding to receptor sites, were inhibited with 50 uM or more TMT in
the incubation medium. The results indicate that TMT can interfere
with several different events of the neurotransmission process in the
central nervous system at concentrations which can be obtained in the

brain of rats after a sublethal dose of the compound.

Running title: In Vitro effects of trimethyltin

Key words: Trimethyltin,Hippocampus, In Vitro-study, Glutamate

Release.
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INTRCDUCTION

Many organic tin conmpounds are now in widespread use. In industry
organotins are used as stabilizers in certain plastic polymers, as
catalysts for polyurethane formation, silicone curing, esterification,
epoxy curing, olefine polymerization, etc. Some organotin compounds
are known to have biocidal effects and are wused as fungicides,
bactericides, algicides, helmintics, insecticides and chemosterilants,

(Barnes and Stoner, 1959; Environmental Protection Agency, 1976).

The most toxic organotin analoges are triethyltin (TET) and
trimethyltin (TMT), which are absorbed via the skin and
gastrointestinal tract. The other alkyl and aryl tin compounds are
poorly absorbed. TET-acetate has a LD50 value of 4 mg/kg when given
orally to rats, while for TMT-acetate the value is 9.1 mg/kg. The
corresponding values for higher tin analoges are for propyl, 118.3;
butyl, 380.2; hexyl, 1000; octyl > 1000 (Watanabe, 1980).

Exposure to triethyltin (TET) is known to produce cerebral edema and
demyelinization in the central nervous system (Barnes and Stoner,
1959; Aleu et al., 1963). Unlike the other alkyltins TMT produces
neuronal necrosis rather than intramyelinic edema (Brown et al.,
1979). At low doses the hippocampal formation and pyriform cortex seem
to be the most vulnerable regions (Brown et al., 1979; Bouldin et al.,
1981). The hippocampal pyramidal cells have been demonstrated to
degenerate selectively after TMT-exposure (Brown et al., 1979; Bouldin
et al., 1981; Naalsund et al., 1985; Dyer et al., 1982). We have
previously measured different neurobiological parameters in the
hippocampus of TMI-exposed rats and found that the glutamergic
pathways are degenerating while the cholinergic and gabaergic pathways
are not affected (Maalsund et al., 1985). Histological changes were
detected three days after injection of a single dose (8 mg/kg 1i.p.)
and the hippocampal FFGC changed gridually fron day three after the
TMT-injection (Mlaalsund et al., 1985). A reduction in a glutanate
transmitter parameter (high affinity wuptake) as an 1indicator of
degeneration of glutamergic terminals, was observed 8 davs after

injection.
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In an 1in vitro recording of the electrically evoked potential of the
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o pyramidal cells in the hippocampus TMT was shown to depress the

activity of the postsynaptic CAl neurons in a dose dependent manner at

S}: concentrations from 3.6 ug to 10 ug/ml (Allen and Fonnum,1984). In the
:?;: present study the aim was to investigate the in vitro effects of TMT
b on the biochemical prosesses of transmission in neuronal tissue. The
i neuronal degeneration seen in the hippocampus after trimethyltin
ki; exposure could be a result of the disruption of mneurotransmitter
;i; functions through an effect on some basic cellular functions. We
[t

present here the results of the effect of trimethyltin in vitro on the
high affinity uptake, spontanous release from synaptosomes and on

receptor binding of tritiated L-glutamic acid and y-aminobutyric acid.

MATERTIALS AND METHOPS

CHEMICALS

Trimethyltin-chloride, 9%, (Aldrich-Europe) was dissolved to 50 mM
concentration in distilled water and added in suitable volumes to the
test  nedia to give the desired concentrations. L—[2,3—3H]
glutaric-acid, 20 Ci/mnol, D-{2,3—3H] aspartic acid, 14 Ci/mmol,
b= 2,300y aninobutyric acid (GARA), 30 Ci/mmol, were all

rhtained from llew England tuclear.

TUASCE PREPARATION

'}ﬂ Tissue honogenates were prepared from the hippocampus dissected from

E%J t e hrain of voung adult male Wistar rats (150-250 g). The rats were

{5 xilled by decapitation, the brains were removed and placed on ice. The !
ugi hippocampi were dissected and homogenized in cold sucrose (0.32 M) at ﬁ
Q? 800 rev/min with a glass—teflon homogenizer. These homogenates were :H
:;: ased for uptake and release experiments. ﬁ
" N

For the experiments on synaptosomal and mitochondrial fractions, a

s

modification of the procedure described by Gray and VWhittaker (1962)
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was used. Homogenates in 0.32 M sucrose were centrifugated at 1000 xg
for 10 min and the pellets washed once. The combined supernatants were
then centrifugated at 20 000 xg for 20 min and the P2-pellets were
resuspended in 0.32 M sucrose and placed on a discontinous density
gradient consisting of 0.8, 1.2 and 1.6 M sucrose. Separation was
achieved by centrifugation on a swing-out head in an wultracentrifuge

at 150 000 xg for 30 min. The gradients were carefully collected
through a hole at the bottom of the tube. The layers between 1.6 and

1.2 M were collected as the mitochondrial fraction and the layers

between 0.8 and 1.2 M as the synaptosomal fraction.

NEUROTRANSMITTER RELEASE

Release of [3H] glutamic acid and [3HJ GABA was measured by a
modification of the method described by Hammerstad et al. (1979).
Briefly 2 ul homogenate containing about 2 ug protein were absorbed to
a small piece of millipore filter. The filters were placed in a small
tissue culture dish, four filters in each dish, and 4 ml Krebs-Hepes
buffer containing 27,5 mM Hepes, 138 mM NaCl, 2,4 mM KCl, 1 mM MgSO4,
2 mM CaClp, 5 mM KHpPO4, 1,6 mM glucose were added. The synaptosome
pools were labelled with [3H] glutamic acid, [3H] aspartic acid or
[3H] GABA by incubation in the Krebs-Hepes buffer containing 5 uM
labeled transmitter (20-30 Ci/mmol) for 20 min at 259C. The filters
were washed four times in Krebs—-Hepes buffer and then each one placed
in a small perfusion chanber made of two disposable plastic tips. The
chambers were continously perfused with Krebs-Hepes buffer.The liquid
flow was held constant at 0.4 ml/min and perfusate was collected in
fractions of 0.8 ml. The chanbers were washed for 20 min with
Krebs-Hepes buffer and the release studied with HKrebs-Hepes buffer
containing 50 mM K¥ in stead of an equivalent amount of NaCl or
Frebs-lHepes buffer containing different concentrations of trimethyltin
(1075 - 10-3 M) for 4 nin periods. The fractions (0.8 ml) of the
perfusate were added 10 ml Insta-Gel (Packard) and the radiocactivity
were counted. The filters were dissolved in Filter Count (Packard) and
the rest activity measured. The results were calculated as percentage

fractional release. The fractional release during perfusion with wash
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buffer (5 mM K') immidately before TMT perfusion were set to 100% and
changes in fractional release were expressed 1in per cent of this
normal spontanous release. Eight superfusion assays were run parallell
by the wuse of an eight channel peristaltic pump. Two assays with
potassium stimulation (50 mM) were run each time as positive controls
of the method. The other six were subject to TMT-perfusion for four

minutes pulses.

HIGH AFFINITY UPTAKE OF NEUROTRANSMITTER

High affinity uptake of [3H] glutamic acid and [3H] CABA was measured
by the method described by Fonnum et al., 1980. 2 ul homogenate
(containing ca b6 ug protein) were added to 0.5 ml Tris-¥rebs medium
containing 15 mM Tris, 140 mM NaCl, 5 mM ¥Cl, 1.2 mM CaClpy, 1.2 mM
MgCly, 1.2 mM NaoHPO4, 10 mM glucose and pH adjusted to 7.4. The TMT
was added to the Tris-Krebs buffer before addition of the tissue. The
mixtures were preincubated for 15 min before incubation with 70 nM
tritiated transmitter (20-30 Ci/mmol) for 3 min at 25°C. The uptake
was terminated by filtration in a Titertek cell harvester with a
Titertek filtermat. The filters were dissclved in 5 ml Filter Count
(Packard) and the radioactivities were counted. For each animal
triplicates of the high affinity uptake were performed at each TMT

concentration and of TMT-free controls.

RECEPTORBINDING

We have measured the sodium-independent binding of transmitter to
synaptosomal membranes. This binding 1is commonly referred to as the
receptor binding (Foster and Fagg,1984). Binding of [3H] glutamic acid
and [3H] CABA was measured by a modification of the method described
by Hill et al. (1984). The hippocampi were homogenized in 20 volumes
0.32 M sucrose, centrifugated at 1000 xg for 10 min and the pellets
were washed once. The combined supernatants were then centrifugated at
20 000 xg for 20 min and the pellets were resuspended to the sane
volume with cold, destilled water and kept on ice for one hour. After
centrifugation at 8000 xg for 20 min the supernatants were gently

decanted and the upper laver of the pellets were rinsed off and added
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to the supernatant. These combined supernatants were recentrifugated
at 48 000 xg for 20 min, and the pellets were stored frozen at -20°C

prior to use.

For the binding assay, mnembranes were thawed and resuspended in
Tris-HCl buffer (50 mM, pH 7.4) and incubated for 45 min at room
temperature before centrifugation (8500x g for 10 min). The membrane
suspensions were further washed three times and incubated with the
Tris—-buffer for 15 min at room temperature between each
centrifugation. The final pellets were resuspended to give a protein
concentration of about 20-80 ug per assay. Binding of [3H] glutanic
acid or [3H] GABA (final concentrations 100 and 50 nM with a specific
activity of 20 and 30 Ci/mmol respectively, or varying ligand
concentrations in saturation studies) were assayed in absence or
presence of 1 mM wunlabeled transmitter, to determine the specific
transmitter binding. Varying concentrations of trimethyltin were added
to the mixture before a preincubation period of 15 min, and then after
addition of the ligand the mixtures were incubated for 15 min at 30°C
for glutamic acid (Raudry and Lynch, 1980) and for 10 min at 20°C for
GABA (Hill et al., 1984). Binding was terminated by Titertek
filtration. The filters were dissolved in Filter Count (Packard) and
the radioactivities were counted. For each animal were run four assays
with total binding and two assays with unspesific binding at each TMT

concentration as well as of TMT-free controls.

PROTEIN MEASUREMENTS
Protein content 1in the honogenates were measured by the method of

Lowry (Lowry et al., 1951).

SCINTILLATION COUNTING
Counting efficiency was 407 for the perfusates and 507 for filters

dissolved in Filter Count.
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STATISTICS

In release experiments each assay was used as its own control. For
high affinity uptake and binding studies the results were compared in
groups and each group compared with one common control group. The
results were analyzed for differences of means by an analysis of
variance (ANOVA). Groups of data which contained unequal means were
further analyzed by Dunnet's test. A probability of p<0.05 was

accepted as significant in all cases.

RESULTS

TRANSMITTER RELEASE

[3H] glutamate was released by perfusion with TMT at concentrations
from 0.05 mM to 1 mM (table 1). The release was measured by exposure
of homogenates in the resting state to TMT, i.e. at a potassium
concentration of 5 mM. D-[3H] aspartate, coumonly used as a false
transmitter for glutamate (Fonnum, 1984) behaved similiar. This
compound which is not metabolised, gave as expected higher releases.
The release of [3H] GABA was studied in parallell and was not
significantly higher than normal spontanous release in the presence of
TMT in the perfusionbuffer at concentrations from 10 mM to 1 mM. The
addition of different concentrations of TMT in the potassium
depolarization buffer (50 mM K+) did not give significant changes in

the release of transmitters investigated (data not shown).

REPETITIVE STIMULATION

Several stimulations with high potassium concentrations (50 md)
reduced the fractional release of glutamate (figure 1). The effect of
TMT induced release was similiar. A previous potassium stimulated
release did not affect the amount of glutamate released by a TMT
stimulation (0.1 mM), and the potassium stimulated release was not

reduced by a previous TMT stimulation (figure 1).
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Ca-DEPENDENCE

The release was normally performed in an assay medium containing 2 mM
calcium. A replacement of the calcium chloride with magnesium sulfate
(10 mM) resulted in a 45% % 7% (M=10) decrease in release after
depolarization with potassium. The effect of the calsium concentration
in the perfusionbuffer on the release induced by TMT was a 24%Z % 127

(N=9) decrease in release.
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EFFECT ON SUBCELLULAR FRACTIONS

The mitochondria and synaptosomes were isolated in two fractions to
see whether the transmitter released by TMT exposure might be derived
from the mitochondria rather than from the synaptosomes. The amount of
uptake and release of tritiated transmitter in the mitochondrial
fraction was 12% of the amount in the synaptosomal fraction.

Fractional release from the two fractions were similar both after
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exposure to 0.5 mM TMT and potassium stimulation. The small release
from mitochondrial fraction may well be due to the presence of

contaminating synaptosomes.

Na-CHANNELS

Tetrodotoxin (TTX) was used to study the importance of Na~channels
(Narahashi, 1984; Catterall, 1984) in the TMT induced transmitter
release. The results showed that the release by veratridine was
reduced to 9% t 2% (N=4) by TTX as expected. In contrast potassium
(50 mM) stimulated and TMT (0.5 mM) stimulated release were not
affected by TTX. These results suggest that the MNa-channel 1is not

involved in the release of transmitter mediated by TMT.

TISSUE CONCENTRATION

The effect of tissue concentration on the amount of [3H] glutamate
released during perfusion of the tissue homogenate with 0.5 m TMT was
measured. At tissue concentrations from 2 - 67 the fractional release

of transmitter was in the same range.
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BRAIN REGION

The effect of TMT on transmitter release is bhere demonstrated on
hippocampal homogenate. Similar results were obtained by using

homogenate from neostriatum.

HIGH AFFINITY UPTAKE

The high affinity wuptake of [3H] glutamate into synaptosomes was
significantly reduced (20 - 30%) with TMT concentrations from 50 uM
to 1l mM in the incubation mixture (table 1). At 5 mM TMT the reduction
was enhanced to 60%. The high affinity wuptake of [3H] GABA was
reduced by 50 - 85% at TMT-concentrations from 0.5 mM to 5 mM.

RECEPTOR BINDING

The receptor binding of [3H] glutamate and [3H] GABA was inhibited by
TMT (Table 1). At a ligand concentration of 100 nM the binding of [3H}
glutanate was reduced by 25% in a medium with 50 uM TMT compared to
TMT-free controls. The binding of [3H] CABA was not significantly
altered at this TMT concentration and a 50 nM ligand concentration.
100 mM and higher concentrations of TMT produced a large inhibition
(50 - 90%) of binding of both ligands. Figure 2 shows the saturation
of the glutamate and GABA receptors at different TMT-concentrations.
The effect of the tin-compound seemed to be a reduction in the number
of sites (Bmax) for glutamate binding (Table 6) while Bmax for GABA
binding and affinity constants (Kd) for both ligands were not

significantly altered.

DISCUSSION

The release of L—[3H] glutamic acid and D-L3HJ aspartic acid from
synaptosomes have been shown to be enhanced by TMT at concentrations
from 50 uM to 1 mM, while the vrelease of [3HJ GABA was not

significantly changed. The enhanced release of glutamate produced by
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TMT has been shown to be calcium dependent, suggesting a synaptic
release. High affinity wuptake of transmitter is inhibited at
concentrations from 50 mM to 5 wM for [3H] glutamate and from 500 mM
to 5 oM for [3H] GABA. Binding of glutamate and GABA to synaptic
membranes was reduced by concentrations of TMT from 50 mM to 1 mM

(Table 1, Figure 2).

TMT has been reported to produce neuronal necrosis in the hippocampal
formation after intraperitoneal administration of two doses of 4 mg/kg
body weight to rats (Brown et al, 1979). The amount of TMT in the
hippocampus after injection of the neurotoxic dose has been mneasured
to 9.1 nmol/g wet weight (Aldrich, personal communication). The lowest
concentration of TMT reported here to produce an interuption of
neurotransmission (50 mM = 50 nmol/ml) in vitro is about five times
higher than in the in vivo situation. This consentration 1is also in
the same range as the concentration (3.5 mg/ml= 17.5 nmol/ml) required
to depress the electric activity of the hippocampal neurons in vitro

(Allen and Fonnum, 1984).!

The TMT stimulated release of glutamate was much smaller but had the
same characteristics of the K" stimulated release in that it was Ca*t-
dependent and TTX independent. The inducticn of release by TMT seems
to be spesific for glutamate, since neither GABA (Table 1) nor
acetylcholine release (Morot-Gaudry, 1984) is induced by TMT. The
release of acetylcholine was inhibited by TMT during depolarization
(Morot-Gaudry, 1984) when tested at a much higher TMT concentration,
narmely from 0.5 to 3.5 mM. The effect of TMT on acetylcholine and
glutamate is therefore probably quite different.

Organotincompounds have been shown to 1induce several effects on
membrane systems. They are associated with C17/OH™ exchanges in
nitochondria (Selwyn et al., 1970), erythrocytes and liposomes (Selwyn
et al., 1970; Motals et al., 1977; Wieth and Tosteson, 1979) and in
pancreatic B8-cells (Pace and Tarvin, 1983). This exchange could
produce a change in the internal and external ClT-concentration. A

reduction 1In the extracellular Cl7-concentration has been shown to
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induce a glutamate release in vitro similiar to that induced by high
potassium concentration (Hardy et al., 1984; Naalsund and Fonnun,
1986). This release takes place even at low changes in C17
concentration (Maalsund and Fonnum, 1986). A TMT induced chronic
increased efflux of glutamate might be due to an alteration in
external C1~ concentration. Reduction in chloride concentration do not

have the same stimulatory effect on the release of the inhibitory

1According to the authors the actual concentrations used in these

experiments are given in the discussion section of the paper.
An error in the calculations has produced disagreement between
molar and ug-concentrations.
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transmitter GABA. (Naalsund and Fonnum, 1986). The lack of effect of
TMT on GABA release supports a theory on Cl1” ions as mediators of TMT
induced release. Measurements on anion exchanges in synaptosomes in

the presence of TMT are at present lacking.

Our results on inhibition of wuptake of GABA are in agreement with
Doctor et al. (1982), who reported a 50% inhibition of GABA uptake in
mouse forebrain synaptosomes at a TMT concentration of 75 uM. We found
an inhibition of uptake of both GABA and glutamate with a slightly
lower sensitivity of the GCABA uptake to the TMT exposure than

reprorted by Doctor et al.

The binding of glutamate and CABA to CNS membranes has been described
by a number of different methods (for review see Foster and Fagg,
1984). The values for the equilibrium dissociation constant (Kd) and
binding capasity (Bmax) in the 1litterature varies widely. We have
measured the binding to a spesific population (saturable) of high to
medium affinity binding sites (Kd < 500 nM) in a preparation of crude
synaptic membranes. UWNat-ions were not present in the incubation
mixture to exclude binding to high affinity uptake sites. The ability
of TMT to 1inhibit the binding of transmitter and reduce the Bmax
should reflect an interuption with the structural or chemical
corposition of the binding sites. The postsynaptic effect of ™T is in
general agreement with the blocking of neurotransmission found by
Allen and Fonnum (1984). According to Allen and Fonnum (1984) TMT
exposure leads to a reduction 1in the number of action potensials
produced by the CAl pyramidal cells in response to stimulation of the

Schaffer collaterals.

In conclusion our in vitro studies show a spesific effect of TMT on
the release of glutamate possibly due to anion exchange, and an effect
of TMT on both glutamate and CABA receptor sites. It 1s not possible
at the present stare to say which effect is linked to the neuronal
damage in the hippocampus. It is well established that glutamate is an
excitotoxic amino acid (Olney et al., 1971), however the effect on the

postsynaptic receptor might decrease such an excitotoxic effect.
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TABLE 2

THE EFFECT OF TRIMETHYLTIN ON THE BINDING CHARACTERISTICS OF GLUTAMATE
AND GABA

TRIMETHYLTIN
LIGAND CoNcC Rmax (pmol) ¥d (nmol)
[3H] 0 136 % 9 503 £ 46
glutamate
10 uM 99 + 5* 415 + 29
100 uM 22 1% 178 *+ 40
1 oM 2 & 5% 279 * 103
TRIMETHYLTIN
LIGAND CONC Bnax (fmol) Kd (nmol)
[3u] caBa 0 335 + 28 83 £ 17
10 uM 205 * 18 46 £ 6
100 uM 240 * 41 67 * 16
1 oM 179 + 22 83 + 17

Pissosiation constants (Kd) and maximum number of binding sites {Rmax)
for the binding of glutamate and GARA in the presence of different
concentrations of trimethyltin. The values were determined by linear
regression analysis on a computer of the Scatchard plots derived from
mean values of four assays in each of three saturation experiments.
Ligand concentraitons in saturation studies were between 10 nM and
500 nM. Calculations are made according to the assumption that oune
type of binding sites 1Is dominating in this concentration range.
*Significantly different from TMT-free controls, p 7 0.05 (Dunnett's

test).




FIGURE 1 TIME COURSE AND INDEPENDENCE OF TRANSMITTER RELEASE AFTER
STIMULATION WITH KT AND TMT.

Time course of release of L-[3H] glutamate from hippocampal tissue in
homogenate, induced by sequential stimulation with: A. 50 mM potassium
(K+), B. 0.1 mM trimethyltin (TMT). C and D shows that a previous
stimulation with potassium does not influence the TMT-induced rlease
and vice versa. The results are expressed as fractional release of
tritiated transmitter in ten minutes during and after a four minutes
perfusion with the indicated stimuli. Results are mean of three to

six experiments. Frror bars represent SEM.
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FIGURE 2. THE EFFECT OF TRIMFTHYLTIN ON THE SATURATION OF GLUTAMATFE
AND GABA RECFPTORS.

Saturation plots of A. L—[3H] glutamate and B. [3H] GABA tinding.
Ligand concentrations between 10 nM and 500 nM were used in saturation

studies. Each point represent spesific binding (the average of four

assays in each of three experiments minus the measured binding in the
presence of 1 mM unlabelled ligand), bars indicating SEM. x-x = TMT-
free control; o-o = 10 uM TMT, A-4 = 100 uM T™MT, e-@ = 1 m{ TMT.
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DIFFERENCES IN ANIONIC DEPENDENCE OF THE SYNAPTIC EFFLUX OF
D-ASPARTIC ACID AND y-AMINO BUTYRIC ACID.

LIV UNNI NAALSUND AND FRODE FONNUM

Norwegian Defence Research Establishment
Division for Environmental Toxicology
P.0.Box 25
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ABSTRACT

The synaptosomal efflux of D-aspartate and GABA induced by a
substitution of the Cl -ions with propionate in the incubation medium
were measured in preparations of hippocampal tissue homogenates. The
efflux of aspartate was significantly higher than spontanous efflux
at 125 mM C1~ (normal = 144 mM) and was increased with decreasing
Cl -concentration. CABA efflux was much less sensitive to a reduction
in Cl -concentration than D-aspartate. The efflux was Ca2+-dependent

in both cases.

Key words: GABA, D-apartate, transmitters, chloride, efflux.

Running title: Anion changes induce transmitter efflux
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INTRODUCTION

The synaptic efflux of endogenous transmitters or exogenously
labelled transmitters and analogues have been studied by several
different depolarization methods (reviews: Szerb, 1983, Fonnum, 1984).
The transmitter amino acids are also secreted by depolarization of
glial cell preparations, but this efflux can be separated from the
synaptic efflux by 1ts 1lack of Ca2+-dependence (Sellstrom and
Hamberger, 1977).

It 1is well established that a sudden change in the external [K+] or
{Cl—] will depolarize the membrane of a mnuscle Ffibre (Hodgkin and
Horowicz, 1960). Stinulation of synaptosomal release by high K+—con—
centration is a2 freaquently used tool in neurochemical research.
Recently it has been shown that a severe reduction in the
Cl -concentration in the perfusion medium was accompanied by an efflux
of the transmitter amino aclids glutamate and aspartate (Hardy et
al., 1984). We are interested in studying the differences in efflux

mechanisms for different transmitters.

The neurotoxic agent trimethyltin has been shown to induce the efflux
of glutamate, but has no effect on the efflux of GABA (Maalsund and
Fonnum, submitted). Trimethyltin is able to induce Cl—/OH— exchanges
across cellular membranes (Motais et al., 1977). It has therefore been
suggested that changes 1in Cl_equilibrium could explain the observed
effects on efflux. If trimethyltin is able to produce a change in the
Cl——equilibtiun in the nerve terminal this could probably result in

transmitter efflux.

GABA 1is known to act as a C1-~ionophore (McBurney and Barker, 1978).
We have therefore suggested that the reaction of the GABAergic
nerveterminal to changes in extracellular Cl -concentration night be
different from that of the glutamergic terminals. If this is the case,
it would give an explanation for the selective effect of trimethyltin

on glutamergic neurons. This could also represent a basic difference
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between the exicitatory glutamergic and inhibitory GABAergic neurons
which could be helpful during discussions on different vulnerability
to neurobiological tools. In this report we present the results of a
comparative study of the efflux of D-aspartate and GABA during pulses

of low Cl -concentration.

METHODS

Tissue homogenates were prepared from the hippocampus dissected
from the brain of young adult male Wistar rats (150-200 g). The hip-
pocampi were homogenized 1In cold sucrose, 0.32 M, to give a protein
concentration of 6 mg/ml. Efflux of D—[2,3-3H] aspartic acid and
[2,3-3H(N)} GABA was measured by a modification of the method
described by Levi et al., 1982, Briefly 2 ul homogenate containing
about 12 ug protein was absorbed to a small piece of millipore filter.
The filter was placed in a small tissue culture dish and 2 ml normal
wash buffer (lst row table 1) was added. After preincubation at 25°%¢
for 15 min the synaptosome pools were labelled with D—[3H] aspartic
acid or [BHj CGABA by incubation in the wash buffer containing 5 uM
labelled transmitter (10-30 Ci/mmol) for 20 minutes at 25%¢. The
filters were washed four times in Krebs buffer and then placed in a
small perfusion chamber made of two disposable plastic ¢tips. The
chambers were continously perfused with buffer at a constant flow of
0.4 ml/min. The perfusate was collected in fractions of 0.8 ml in
counting wvials. After a washperiod of 30 minutes the collection of
fractions was initiated. An additional wash period of 20 minutes was
followed by a 4 minutes perfusion period with one of the buffers
numbered 2-7. The chambers were then washed with buffer 1 for
16 minutes hefore the experiment was terminated. To each fraction of
the perfusate were added 10 ml Opti~-fluor (Packard) and the radio-

activities were counted. The filters were dissolved in Filtercount

(Packard) and the rest activity measured.

-
2+
For measurments of the Ca  -dependence the buffers were substituted

oy +
with “low=Ca-*"=buffers centaining 0.1 it Ca2 , {nr. 7-9) before the
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collection of the fractions started. All the CABA-efflux experiments
were performed in the presence of 0.1 mM of the GABA-transaminase

inhibitor, amino oxyacetic acid.

High affinity uptake of transmitter was measured in the presence of
either 70 nM D-[3H] aspartic acid or 70 nM [3H] GABA. Crude homo-

genates were diluted with Krebs buffer containing either 150 ml €l or
50 mM c1~ and 100 oM propionate. (For details on the method see Fonnunm

et al, 1980).

RESULTS AND DISCUSSION

The present study shows that the efflux of the glutamate analogue
D-aspartic acid is much more sensitive than the efflux of the
inhibitory transmitter GABA to reduction in the Cl -concentration. The
efflux of D-apartic acid was inversely dependent on the concentration
of Cl and significantly higher than normal spontanous efflux at all
the Cl -concentrations tested (Table 2). A reduction in the [Cl—] to
6 MM gave an efflux which was four times the efflux stimulated by
50 mM K+. The GABA efflux during exposure to low Cl™ was approximately
50% lower than the D-aspartate efflux at Cl -concentrations from 6 mM
to 50 mM and not significantly different from the normal spontanous

efflux for chloride concentratoins above 100 mM.

The Cl -ions were substituted with propionate, which does not pass
through the Cl -channel according to Eccles (1964). This substitution
should therefor produce a change in the relation between intracellular
and extracellular Cl -concentration. According to the Goldman
constant-field equation, which states that the membrane potential is
dependent upon the distribution of K+, Na+ and Cl-, this will create a
shift in the membrane potential towards depolarization, and thereby
result in an efflux of transmitter. The duration of the depolarization
and hence the amount of transmitter released will depend on diffusion
and the cell's ability to transport Cl™ out of the cell to restore an
eauilibrium. This hypothesis was supported by our results which are an

extension of the previous findings by Pardv et al. (1984).
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It is well known that the gynaptosomal high affinity uptake of GABA is
dependent upon a high concentration of extracellular c1 (Kanner,
1978), while the uptake of glutamate is less dependent on high [C1~J
(Kanner and Sharon, 1978). The effect on reuptake of transmitter
produced by changes in the anion composition was measured for both
D—[3H] aspartic acid and [SH] GABA. Uptake of D-[3H] aspartic acid was
reduced by 207% * 27 (mean * SEM, n=4) after replacing 100 mM €l with
propionate, while {3H] GABA uptake showed 247 * 47 (mean * SEM, n=6)
reduction. With the same ionic composition the observed increase in
efflux was 3007 for D-aspartic acid and 2007 for CABA. These results
suggests that the measured efflux was not merely due to a reversal of
the uptake mechanism that could possibly have been caused by the
changes 1in 1ionic gradients. It also shows that the observed increase
in tritiated transmitter in the perfusate was mainly due to an
increased efflux rather than to a reduced reuptake. Additional
evidence for this 1is provided by earlier reports stating that

continous perfusion at the rate used here (0.4 ml/min) ninimizes

reuptake of the excreted transmitter (Raiteri et al, 1975).

The measured efflux was considered to be of synaptosomal origin. Glial
cell uptake and release of transmitter are very labile to mechanical
disruption such as homogenization (Fonnum, 1984). Glial release is
therefor normally not a major part of the efflux measured by the
method wused here. This was verified by a demonstration of the
Ca2+-dependence of the efflux. N-Aspartic—acid efflux induced by 50 mM
K+ was reduced by 407 :_22 (mean * SEM, n=4) by a reduction of calcium
in the medium from 2 m!! to 0.1 mM. The efflux induced by 50 mM Cl was
reduced by 467 + 27 (mean * SEM, n=4) in the low-calciumn medium.
GABA-efflux was reduced by 67% % 57 (mean % SEM, n=4) and 717 % 4%
(mean * SEM, n=4) for high potassium- and low chloride-induced efflux
respectively. The high Ca2+—dependence of the chloride stimulated
efflux and the potassium stimulated efflux suggests that large parts
of the measured effluxes were associated with a depolarization of the

synaptosormal membrane.

"
1
t‘-

-

Cl -ions are essensial for ATP-dependent proton transport across the
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membranes of catecholamine storage vesicles (Pollard et al, 1979) and
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the microsomal vesicles in plant cells (Bennet and Spanswick, 1983).
Reduction in [C1~} will reduce proton transport and thereby collapse
the pH-gradient across these vesicle membranes, resulting in leakage
of the stored molecules. Some evidence exists for the storage of
glutamate 1n synaptosomal vesicles (Naito and Ueda, 1985), while the
existence of a vesicular storage of GCABA remains unclear. The
possibility of a vesicular storage of the transmitter amino acids
raises the question of whether the observed efflux reported in the
present paper 1is the result of a change in the pH-gradient across

vesicle membranes. Changes in intracellular [Cl—] is very slow

v o
[

N
B
’l

following an extracellular reduction in {Cl—J (Kelly et al, 1969), and

Ede

P

could not produce a pH-change resulting in an 1immediate efflux of
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transmitter after a change in the anlon composition of the perfusion
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buffer. Diffusion of propionate in the free acid form across the cell
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membrane 1is known to take place at a slightly faster rate than the C17

v
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diffusion (Carvalho and Carvalho, 1979). This may represent a cause of
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a reduction in the intracellular pH resulting in vesicular leakage of
transmitter, although this diffusion also seems to need about 1 -~ 2
ninutes before equilibrium 1s achieved (Carvalho and Carvalho, 1979)

and hence should give a lag time before any transmitter efflux.

GABA s known to increase the mnembrane permeability to Cl -ions
(McBurney and Barker, 1978). A possible explanation for the lack of
effect of a 45 mM reduction in the Cl -concentration on the measured
CABA efflux could possibly be due to the GABA-ergic neuron having a
greater ability to restore a transmembrane equilibrium of Cl . The
presence of presynaptic CABA receptors may increase the synaptosome's

ability to regulate GCABA efflux (Mitchell and Martin, 1978).

Our results showing that a 20~40 mM reduction in Cl -concentration
produced an efflux of D-aspartic acid which was twice the amount of
the spontanous efflux, while the same Cl--change had no effect on the
CABA efflux, is an interesting observation, which should be taken into

account in studies of drugs that mav act on €1 -channels.
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ABSTRACT

Rats were chronically implanted with bipolar electrodes in the
hippocampal regions containing cells generating electric
theta-activity. The animals were exposed to 500 ppm of toluene in
inhalation chambers, for 8 or 16 hours per day for 5 days per week in
12 weeks. The hippocampal electric activity was recorded 48 hours
after each weekly exposure, ensuring a minimal amount of toluene in
the tissue during the recordings. The eight hours daily exposed group
showed an initial period of increased frequency of the regular theta
waves together with an increased incidence of theta activity after 1 -
2 weeks of exposure. In the sixteen hours daily exposed rats two weeks
of toluene inhalation produced a significant reduction in the theta
wave frequency. This change was also reached after eight weeks of
e.,osure 1in the eight hours daily exposed group. At this moment the
theta activity was frequently disrupted by short amplitude 1irregular
waves, a phenomen which increased gradually throughout the rest of the
exposure period. The average blood concentration of toluene was 16.7
mg/ml and 17.7 mg/ml and not significantly different for the eight and

sixteen hours exposed groups respectively.

Key-words: Hippocampal EEG, Inhalation, Toluene.
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INTRODUCTION

Neurophysiological tests allow relatively direct assessment of the
functional integrity of specific neuronal systems. These tests also
have the advantage that they can be carried out several times in the
same animal, and give valuable information concerning the development

of a brain dysfunction.

EEG as a screening test for solvent induced brain damage in humans has
not been recomended because of a large variation in the normal EEG's.
In a normal ©population 10 - 15% wmay have EEGC abnormalities
(Seppdldinen 1985). In animals however, the use of intracerebral
implantation of electrodes in defined brain areas enables recordings

with a high specificity and with a minimal interindividual variation.

Hippocampal EEG 1is characterized by a very prominent rhythm designated
the theta rhythm, with an approximately sinusoidal pattern of
electrical activity of different frequency ranges in various species
(6-12 Hz in the rat). Theta rhythm can be recorded from the
hippocanmpus of several wmammalian species, it possess a strong
biological potential (1-3 mV in amplitude), and can readily be
recorded by electrodes properly implanted within the hippocampus. The
theta rhytm is selectively present during spesific behaviors (Vertes
1982).

We have previously used hippocampal FEG to study the development of a
degeneration process after injection of the well known neurotoxic
substance, trimethyltin (Naalsund et al. 1985). This study showed that
the hippocampal electric activity was a more sensitive parameter than
histological and neurochemical parameters for early detection of

damage.

Toluene has been reported to produce alterations in CNS excitability
(Benignus 198l) and sensory function (Pryor et al. 1983a; 1983b; Dyer
et al. 1984) in animal studies and in humans (Metric and Brenner 1982;

Cooper et al. 1985). Abnormal electrcencephalographic (EEG) activity

SEJUREE, Y b g AN ERE N JELR R

‘
¢
1
.




WY YO el Rl Sdt Sk aads ¥ 28 Ao nai mas easiasend-shd ohd ath gt d avh at R Bt ot R-dolt Gak doh SakoBaloSatota e Mt N R T e R M L I A R |
- ‘i

-..'l-

i 92

» -

R

o

e

e

.- .

el after toluene inhalation has been found in several cases after both
* .

abuse and occupational exposure (Andersen and Kaada 1953; Knox and
Nelson 1966; Seppdldinen et al. 1980; Grasso et al. 1984), as well as

in animal experiments (Takeuchi and Hisanaga 1977). :

The present paper describes neurophysiologic studies designed to
detect alterations in the hippocampal theta cells or their activating

or 1inhibitory connections following exposure to 500 ppm toluene at

various time 1intervals. This 1level 1is above the recomended TLV
(threshold 1limit wvalue) of 75 ppm for an 8 hr exposure (Norwegian
Labour Inspection 1984), but is within the range of some short-~term
exposure situations (Benignus 1981) and far below the exposure level

for "sniffers” (Benignus 1981).

MATERTIALS AND METHODS

Surgery. The hippocampal EEG was recorded in male Wistar rats with
chronically implanted electrodes. Initial body weights were between

300 and 400 g. Surgical preparation of the rats were performed under

diazepan (5 mg/kg i.p.) and fluanizone (7.5 mg/kg s.c.) anesthesia.

The rats were placed in a stereotaxic frame, and the skin and

“
n
'
»
.

connective tissue on the skull were removed. Stainless steel screws

were set in the skull to serve as anchors for the electrodes. The

Lo taras

electrodes were made of a silverplated copperalloy conductor (127 umM
diam.) insulated with teflon and each soldered to a male golden pin -
component (220-P02100 Bunker Ramo, Amphenol North America). The :
electrodes were twisted and cut so that one tip was 0.7 mm shorter S
than the other. Only the tips were bared of insulation and they were Q
spaced 1.5 rm from one another. The electrodes were fixed to the ry
anchors with dental cement. N
N
Placement of such electrodes in the dorsal bhippocampus with one in the S
subfield CAl of the pyramidal cell layer and the other in the granular E
layer of fascia dentata (FD), permits the recording of clear and large ;
amplitude theta activity either bipolarly or unipolarly (Sainsbury and i
‘
E
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Bland 1981). One of the screws served as a zero level during unipolar
recordings. The implantation coordinates were the following: 3.2 mm
behind bregma, 2.0 mm lateral to the midline and 3.0 mm depth from the
dura (fig. 1). The electrode pair was longitudinally oriented with the

deepest electrode in posterior position.

Recording. After the surgery the rats were allowed ten days to recover

before any recordings were taken. At least two recordings were carried
out before the exposure period, and one recording per week during
exposure time. The rats were allowed two days of recovery from
exposure before recording at any time, ensuring no solvent to be
present in the tissue (Pyykkd et al. 1977). During recording the
animals were situated 1in cages (50 x 30 x 15 cm) without cover and
connected to the graph (Grass Electroencephalograph model 1IIIc)
through a female plug. The behavior of the rats were coded on the
records throughout the test period. Each rat was tested for five to

ten minutes, assuring that different behavior types were seen.

Fxposure. FExposure to toluene was performed in an inhalation chamber,

volume 300 litre, with constantly supply of vaporized toluene diluted
to 500 ppn in the inlet air, and a ventilation of 3000 1 per hour. The
toluen concentration was measured continuously with a Miran IR
spectrophotometer connected to & recorder. A second chamber was
ventilated with fresh air for control experiments. Temperature and
humidity 1in the animal room were controlled according to OECD

guidlines (22 * 3°C, 30-70% relative humidity).

The animals were divided into four groups: two groups spent eight
hours per day in the toluene and control chamber, respectively, while
the other two groups were kept in the chambers for 16 hours per day.
The exposures were carried out for five days per week. The eight hours
exposure was carried out during daylight hours and in an illuminated
room, while the sixteen hours was performed during the dark hours and
without 1illumination. This was done for practical reasons. The effect

of the activity level of the animals on the uptake of toluene was

[—
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tested by blood-concentration measurements (gass—chromatography,

headspace tecnique).

RESULTS

The daylight exposed group had an average blood-concentration of
toluene of 16.7 * 2.7 ug/ml (N=3), while for the dark-exposed group
the concentration was 17.7 * 1.8 ug/ml (N=3), measured at the end of
the fifth exposure day. There was no statistical difference hetween

the two groups.

Clear theta waves were recorded during type 1 behaviors (walking,
rearing, changes in posture, head movements). Frequencies of the theta
waves were estimated from at least five 1 sec segments of graph
records from each brain half during walking or rearing. Average values
of these estimates are presented as a function of exposure time in
fig. 2. The animals exposed for eight hours per day show an initial
increase 1in the frequency followed by a decline. The animals exposed
for sixteen hours showed a faster and more pronounced decline in
frequency. Ten days of toluene inhalation produced a significant
reduction in the theta-wave frequency in the rats with longest
exposure intervals, whereas forty days of exposure produced the same

char_e in the elght hours exposed group.

Toluene exposure was terminated after 60 days of exposure. Two animals
from each group were allowed a recovery period of one ronth before a
last recording was performed. No incr=ase in the theta wave frequency
had occured during this recovery period, which 1indicate that the
observed changes was irreversible. Neither of the control groups
showed any change in frequency or quality of the theta activity during

and after the treatment period.

Parallell to the changes in frequency of the theta waves, qualitative

changes also occured. The first period of increascd frequency was not
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accompanied by any disruptions in the regular waves during type 1
behavior. Curing immobility, which 1is normally associated with
irregular waves, however theta waves were in some instances seen in
this period (fig. 3). The reduction in theta frequency was followed by
a disruption of the regular waves. After 60 days of exposure regular
theta activity were absent in the sixteen hours daily exposed group
(fig. 4) while the eight hours daily exposed group had frequent
disruptions with short amplitude waves during the theta-activity
(fig. 3). Only slight improvement in the guality of the theta waves

are seen after the one month recovery period.

DISCUSSION

Toluene 1inhalation produced disruptions and frequency changes in the
hippocampal theta activity. After an initial increase in the frequency
and an increase in the occurence of theta waves, there was a reduction
in the frequency and a gradually increased disruption of the theta
waves. The degree of changes were related to the length of the
exposure period and to the daily exposure intervals. Sixteen hours per
day with 500 ppm toluene produced frequency reduction after ten days,
while eight hours daily exposure to the same concentration gave
frequency reduction after forty days. Recovery for one month gave
small qualitative improvements but 1.0 increase in frequency towards
normal theta waves. The initial increase in frequency was only seen in
the eight hours exposed group. It is likely that a frequency increase
in the sixteen hours exposed group could have occured during the first

five days of exposure and therefore have not been detected.

Previously it has been shown that very high doses of toluene (4000
ppm) in short exposure intervals (four hours) will reduce hippocanpal
theta wave frequency and simultanously give an increase in the theta
component of the hippocampal FEGC (Takeuchi and Hisanaga 1977). The
present report confirmn and extend the nature of these obhservations and
suggest that also low concentrations (500 prm) of toluene can induce

such changes during chronic exposure.

1
|
|




A et S el pll et A e A il “ ACSa i Il Sl AR AP et BN it Sl TS

ML Al o ai S R B ot ARV Rt Iaub ik St

96

In the rat there are only two rather well-defined behaviors during
which theta activity is present, i.e. voluntary motion and paradoxical
sleep (Winson 1974). This is not true for other species, eg. cats and
rabbits, in which extensive behavioral observations have been made
(Winson 1972). During ether or urethane anesthesia spontanous theta
waves have been observed in the rat (Bland and VWhishaw 1976). A
similar anesthetic effect could possibly explain the observed theta

activity during immobility in the toluene exposed rat.

Several nuclei at different levels of the neural axis from the brain
stem to septum appear to be involved in hippocampal theta generation.
With few exceptions, studies indicate that the wmedial pontine region
of the reticular formation 1is the main source for hippocampal
synchronization and that the median raphe nucleus is the brain stem
source for hippocampal desynchronization (Vertes 1982). The
communication between the brain stem and the hippocampus are mediated
via the medial septum/diagonal band (Vertes 1982). Septal lesions can
give complete loss of hippocampal theta-activity (Andersen et al.
1979). The effects of brain stem lesions on the hippocampal EEG are
less straightforward, possibly because ascending brain stem systems
are more diffusely organized than the septal- hippocampal system.
Increased occurence of hippocampal theta, as were seen in the rats in
a period during toluene exposure, may reflect damage to desynchron-
izing systems. Lesions 1in the median raphe nucleus and the lateral
hypothalamus (Vertes 1982) shows the characteristics of damage to such
pathways: the occurence of a lowfrequency theta (5.8 Hz) during
immobility. Several synchronizing pathways maintain the theta activity
(Vertes 1982), an interuption of one synchronizing system would

therefore have the effect of slightly reducing the theta frequency but

not abolishing theta (Vertes 1982). From these data it follows that
our observations could be associated with both a damage to the

desynchronizing and to the synchronizing pathways.

IS

Increased frequency and improved quality of hippocampal theta waves

-
FY

during type 1 behavior is also reported in rats with severe motor

A
i 4 rl'~

deficits after surgically prepared cerebellar lesions (Myhrer and
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Allen 1985). It 1is suggested that activation of compensatory
mechanisms due to adoption of new behavioral strategies could be

reflected in this way.

Hippocampal theta activity may be manipulated by systemic or ionto-
phoretic application of pharmacologically active substances. A large
number of drugs depress the theta rhythm of the hippocampus, among
these are anesthetics, hypnotics, tranquilizers and related drugs
(Stumpf 1965). In situ injection 1in the medial septal nucleus, of
atropine or GARA, inhibits theta activity (Kolb and Whishaw 1977;
Allen and Crawford 1984) and the same effect can also be achieved by
blocking the excitatory action of glutamate 1in the hippocanmpus
(Fontain et al. 1984). Cholinergic agents are known to produce theta
waves, provided the septal area is intact (Stumpf 1965). The mechanism
by which toluene can produce an irreversible depression of the
hippocampal theta activity should be quite different from the acute
membrane fluidizing action of organic solvents (Franks and Lieb 1978)
for which the mnenmbranes seem to develope a tolerance (Chin and
Goldstein 1977). Accoruing to Pyykkar et al. (1977) the toluene
concentration in brain tissue is reduced to 0.1% of its level during
exposure, 24 hours after termination of the exposure. This indicates
that acute effects have not been measured in our experiments. In view
of the results from surgical and pharmacological manipulations of the
theta rhythm it is clear that the observed changes in hippocampal EEG
after toluene inhalation could be the result of a toxic action on any

part of the neural system generating or regulating the theta activity.
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FIGURE 1.

Representative example of location of electrodes. The implantation
coordinates were for the dentate electrode (FD): 4.7 mm behind bregma,
2.0 om lateral to the midline and 3.7 mm below the dura, and for the
pyramidal electrode (CAl): 3.2 mm, 2.0 mm and 3.0 mm given in the same
order. The section shown is a frontal view 3.3 mm behind bregma

(Paxinos and Watson, 1982).
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o FIGURE 2.
P
) Frequency of theta waves during walking or rearing after exposure to
L)
i\ 500 ppm toluene for eight (x) or sixteen (o) hours per day, five days
f".~: per week. Toluene inhalation was started at point zero on the
’_J’ horizontal axis, days without exposure are not counted in the exposure
A P
A period (5 days = 1 week). Each polnt represent an average of three to
o eight animal records (one brain half give one record), and the bars
L)
e indicate the standard error of mean. * Significant different from
,l'"
"-ﬁ' controls (p<0.05, Student's T-Test).
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FIGURE 3.

Electric activity in the dorsal hippocampal formation before, during

and after a 60 day period with toluene inhalation, 500 ppm for eight

hours per day, five days per week. Days without exposure are not
ounted in the exposure period. The records are bipolar registrations

from a single rat.
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FIGURE 4.

Electric activity in the dorsal hippocampal formation before, during
and after a 60 day period of toluene inhalation, 500 ppm for sixteen
hours per day, five days per week. Days without exposure are not
counted in the exposure period. The records are from bipolar

registrations from a single rat.
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